DPP2001: International Conference on Digital Production Printing and Industrial Applications

Intelligent Interfaces for Content-Based
Retrieval of Images and Designs
from Digital Databases

Geert Caenen

ESAT-PSI
KULeuven
B-3001 Leuven, Belgium

geert.caenen@esat.kuleuven.ac.be

Abstract

We outline the architecture of a CBIR-interface that sup-
ports intuitively transparent user-feedback and database
navigation. The feedback is expressed directly in terms
of images (rather than features) by singling out both pos-
itive and negative examples. A parametric inference en-
gine is introduced to translate this input into a relevance-
probability model.

1. Introduction and Motivation

The explosive growth of digital multi-media repositories
has highlighted the need for accurate and efficient content-
based image retrieval (CBIR), which turns out to be a for-
midable problem. A large part of the challenge is due to
the fact that there is no canonical way to capture the visual
content that is encapsulated in an image. Indeed, the defi-
nition of content is intricately tied up with the underlying
visual appreciation and goals of the user, and will conse-
quently vary from occasion to occasion.

It therefore seems foolhardy to attempt full automation
of content-based searches and the most successful CBIR
search-engines are the ones that keep the human in the loop
by regularly requesting his feedback. Hence the interest in
intelligent interfaces that prompt the user for feedback and
then try and capitalize on it to expedite the search-action.
More precisely, the feedback is harnessed to estimate for
each image in the database the likelihood of its relevance to
the user, whereupon the most promising candidates are dis-
played for further inspection and feedback. This procedure
is then iterated as often as necessary to locate the target im-
age. The essence of the search-procedure can therefore be

322

Eric J. Pauwels

PNA 4
Cwi

Amsterdam SJ 1098, The Netherlands

eric.pauwels@cwi.nl

summarised as a sample-feedback-update loop ':

1. Using some internal model of the user’s preferences,
the search-engine draws a representative sample from
the database and presents this selection to the user
for inspection;

2. Upon inspection the user provides some feedback,
thereby indicating which images are particularly rel-
evant with respect to his goals;

3. The system uses this feedback to update its internal
model of the user’s preferences and returns to step 1.

Modes of relevance feedback The specific form in which
feedback is solicited varies from interface to interface. In
the earliest versions (eg. QBIC), the user could express
perceptual preferences by adjusting sliders that govern the
relative weights of pre-specified image-features. However,
it quickly turned out that this was not very accommodat-
ing for several reasons. First of all, it is difficult to clearly
visualise what the precise impact of different parameter-
combinations is. Secondly, to keep the interface manage-
able the number of sliders must be kept to a minimum,
which entails that the user can only interact with a small
number (5-10 say) of hard-wired features. Given that the
typical number of features easily exceeds 100, this is a se-
vere restriction.

To circumvent these problems, the new generation CBIR-
interfaces, of which PicHunter [1] is a prime example, have
shifted their focus from features to images: The user is
no longer prompted to specify individual feature values or

I The reader is invited to have a look at the accompanying movie-clip
at http://www.esat.kuleuven.ac.be/~pauwels/parissxl.htm

DPP2001: International Conference on Digital Production Printing and Industrial Applications

weights, but can directly express his (global) preference of
one image relative to the rest. Clearly, compared to the
original feature-centered interaction, this type of interac-
tion is perceptually more transparent and appealing.

It is this model of natural interaction that we will ad-
here to in this paper. More precisely, at every stage of the
search-procedure, the user is shown a collection of images
and simply indicates which of them are particularly rele-
vant or irrelevant to his search. The underlying inference
engine will use this simple input to estimate a probabilistic
model of the user’s preferences and will bias the next sam-
ple accordingly. How to design such an inference engine
is the main topic addressed in this paper.

Probabilistic Relevance Measure In the scenario out-
lined above, the main role of the interface is to obtain as
good an estimate of relative relevance of images as pos-
sible. The most straightforward way to model the fuzzy
state of knowledge about the user’s preferences, is for the
interface to assign to every image I; (j = 1,...,N)in
the database a relevance probability p(I;) that reflects the
current estimate of relevance. Hence, p(I) = 1 means that
in its current estimate, the image I is estimated to be highly
relevant, whereas p(I) =~ 0 expresses the opposite. As
pointed out earlier, this probability will be time-dependent
since it is refined as more examples and counter-examples
are accrued during the search-procedure. If necessary, we
will clarify this time-dependence by explicitly referring to
the iteration-step ¢ when mentioning the relevance proba-
bility p(().

Clearly, unless we have prior knowledge, initially ev-
ery image in the database is considered equally likely, and
as a consequence the initial estimate p(®) for the probabil-
ity measure is uniform:

pO(I;)=1/N foreveryj=1,...,N.

However, as gradually more information about the user
preferences becomes available (through the use of rele-
vance feedback), the probability measure will change: it
will increase in some locations but decrease in others. In
short, the probability measure will start concentrating on
regions in the database that seem promising. As a con-
sequence, images in these regions are more likely to be
sampled for display (and hence feedback).

In mathematical parlance, if I is the target image (let
us assume there is a unique one), then we would like that as
the number of iteration-steps ¢ increases, p(*) (It) — =1,
while p()(I;) — —0 (for all j # T). Rephrased in these
abstract terms, a feedback-driven retrieval session there-
fore looks like this:

At iteration step t use the probability
distribution p® to generate a sample

1. Assign an initial relevance-probability
pO(I;) to every image in the database;

323

S from the database;

3. Allow the user to generate feedback
on the sample S;

4. Use this feedback to estimate the
updated relevance-probability p(tt+h)
and go back to step 2.

Aim of paper Clearly the main problem in the iteration
above is the 4th step: updating the relevance probability
measure. The aim of this paper is to show how logis-
tic regression promises to be a very simple and effective
methodology that does exactly that. Compared to the more
popular choice of Bayesian modelling, logistic regression
enjoys two main advantages:

1. Being a parametric model, logistic regression is much
more efficient in its use of the available data;

2. The diagnostics that form an integral part of regres-
sion models can be used to advantage when attempt-
ing automatic feature selection.

In the remainder of this paper, we will adhere to stan-
dard practice and assume that every image I; can be rep-
resented by a K-dimensional (numerical) feature-vector
Xj = (&1,)2, ..., %K) so that a database that comprises
N images can be represented as a [N x K data-matrix, the
jth row representing the feature-vector of the jt* image
I;.

2. Interface lay-out

We will outline the lay-out of a simple generic interface
that allows the user to set aside relevant images during the
exploration of database, and to use this collection to steer
the search into the required direction. In its simplest im-
plementation this interface comprises two display windows
and an inference engine. The former are used to display
images for relevance feedback, while the latter (on which
we elaborate in the next section) is invoked to translate the
user’s input into a probability measure. For the sake of
clarity, we will discuss these components separately (for a
schematic overview we refer the reader to the accompany-
ing movie-clip).

At all times, the interface shows three display-windows,
between which the user can move seamlessly:

e Window 1: Sample display This screen displays
the by now standard matrix of images that are (ini-
tially randomly) sampled from the database and pre-
sented to the user for inspection. The user can select

DPP2001: International Conference on Digital Production Printing and Industrial Applications

images that are deemed relevant whereupon they are
copied to the collection box (see below). Images
of no particular interest are simply ignored. Each
time a “refresh button” is pressed, the sampling al-
gorithm is activated and a new sample is generated
for inspection. The sampling algorithm that is used
to generate the new sample can be biased by the in-
ference engine (cfr. section 3) to accommodate the
preferences of the user.

e Window 2: Collection box for relevant images
The second screen is used as a simple collection
box in which there are two bins: one for the posi-
tive feedback (i.e. examples of similar or partially
similar images), and one for the negative feedback
evoked by strongly dissimilar images (also called
counter-examples) that seem to run against our ex-
pectations. Whenever the user comes across an im-
age he considers relevant in that respect, it is added
to the collection box. This box can be inspected at
all times, and images that — in the light of later ad-
ditions — no longer seem particularly relevant, can
be removed. The collection box should be thought
of as reflecting the user’s cumulative (qualitative)
knowledge about the database. This information will
be turned into more quantitative measures by the in-
ference engine (see section 3).

3. Design of Inference Engine

3.1. Learning from relevance feedback: Probabilistic
Framework

As explained above, the collection box is used to collect
both examples and counter-examples of the sort of images
the user deems relevant. The reason for collecting them is
to be found in the fact that this information can be used to
bias the next sample favorably so that the fraction of inter-
esting retrieved images increases over time. To this end we
have implemented an inference engine that uses these data
to generate an estimate of where interesting images can be
found.

In order to proceed we must set up a mathematical
framework within which we can discuss the questions at
hand. As pointed out before, each one of the images I}
in the database (j = 1,2, ..., N) is represented by its K-
dimensional feature-vector x; = (xj1,%j2,...,%jK). At
every stage of the search-history, the user has inspected a
(small) fraction of the database and has provided the sys-
tem with feedback by making a number of positive and
negative selections and putting them in the collection box
as examples and counter-examples (see above). This can
be formalized by saying that for the (say n) images in the

324

collection-box C we have further information that is cap-
tured in the binary variabley; (i = 1,...,n) defined by

1
i = { 0 if image x; is considered a counter-example

(1

To get an operational mathematical model we assume that
these feedback-variables are observations of a binary stochas-
tic variable Y that assigns a predicted relevance output (0
or 1) to every possible feature-vector x € IR¥X. Put dif-
ferently, give its current state of knowledge based on the
examples and counter-examples gathered in the collection
box, Y (x) is what the system predicts will be the user’s rel-
evance judgement (0 or 1) if the latter was asked to judge
an image with feature-vector x.

Since Y is a binary stochastic variable we can model it

using a simple Bernoulli distribution (i.e. a binomial dis-
tribution with a single repetition) with success-probability

if image x; is considered an example

p:

Y ~ Ber(p) ie. {]Izgj i (1)3 211)_ »)

The dependence of Y on the image-features x is captured
by equating the binomial success-probability p to the rele-
vance probability p(x) introduced in section 1. As a conse-
quence, if p(x) = 1, then Y (x) = 1 with a high probabil-
ity and there is little uncertainty about the outcome. Sim-
ilarly, if p(x) = 0 then Y (x) = 0 with a high probability.
However, if p(x) = 0.5 the predicted relevance outcome
Y takes the values 0 and 1 with almost equal odds, indicat-
ing that for an image with feature-values x it is difficult to
predict the user’s reaction.

To finalize this mathematical setup we need to specify
how the relevance-probability p(x) depends on the feature-
values x. Without loss of generality we can assume that
this dependence takes the form of a logistic regression model:

p(x)

gy p(x)
The left-hand side is called the logit-ratio of p and is in-
troduced to transform the value of p, which is constrained
to the interval [0, 1], to a quantity that ranges over IR and
is therefore easier to model with an appropriate function
f(x). In standard uses of logistic regression the function
f is taken to be linear, but we have opted for a quadratic
version for reasons that will be explained in section 3.2.

Equation (3) completes our mathematical framework
for modeling user’s relevance feedback. Indeed, if one
knows the explicit form of the function f, then given an
arbitrary image with corresponding feature-vector x, one
can compute the relevance probability p(x) by inverting
eq.(3) to obtain:

 exp(f(x)
P = T (7 (0)

fx) 3)

“4)

DPP2001: International Conference on Digital Production Printing and Industrial Applications

Plugging this value into eq.(2) yields a complete specifi-
cation of the stochastic variable Y (x) ~ Ber(p(x)) that
predicts whether or not the user will consider the image
relevant. Clearly, if we have a good model for user rele-
vance (which will therefore perform well in proposing new
relevant images), then we expect Y; = Y (x;) to corre-
spond closely to the actually observed relevance y; for the
images 7 in the collection box C. Hence, within the con-
straints of this framework, finding a good model for rel-
evance feedback boils down to specifying an appropriate
function f. Recall that this function is user-dependent and
changes during the search process as more information is
accrued.

3.2. Quadratic model for univariate covariates

Rephrased in the terminology introduced above the prob-
lem of the inference engine can be summarized as follows:

1. At every stage in the search process, the user pro-
vides the system with feedback that is summarized
as a collection of examples (y; = 1) and counter-
examples (y; = 0) in the collection box (C);

2. Based on this information we need to estimate the
relevance probability p(x), or equivalently the func-
tion f(x), that will maximise the agreement between
the predicted (Y;) and observed (y;) values for the
relevance of the collected images x; € C;

3. Once a good model has been obtained, one can use
it to bias the next sample drawn from the database.

Although, in general, relevance might depend on the full
feature vector X = (21, 72,...,7x) € RX:

p:p(X) :p(.'L'l,.’L'z,...,.'L'K),

it is clear that reliably modeling the full probability density
p(x) on such scant information will in general prove to be
an intractable problem, so we do the next best thing and
model p as a function of each feature z;, (k=1,...,K)
separately. Hence, in mathematical terms the problem boils
down to this: the collection box contains a number of ex-
amples and counter-examples and for each single feature
xj, (in what follows denoted x for short) we want to model
the dependency of p on z.

The simplest case would be the one in which one can
find a threshold value (z(?) say) that separates examples
from counter-examples. Such information could then be
fed back to the sampling procedure. However, in most
cases the situation will be less clear-cut. The best one can
hope for is that one can correlate the probability p with
the z-values so that trends become visible and can be har-
nessed to improve the efficiency of the search.

325

The standard way to handle such a situation is to
invoke a logistic regression model

_p@)
1—p(z)
where the logit-ratio of p in the left-hand side is expressed
as an appropriate function of the feature-value x. For the
application we have in mind, we have opted for a quadratic
logistic regression model:
p(z)
o8 p(x)

The reason for the choice of a quadratic function might
need some clarification. If relevance is (directly or in-
versely) proportional to the feature value, then a linear
model will suffice (i.e. we can put @ = 0); however there
obviously are situations where for instance, only medium
feature-values are acceptable, while extreme values (both
larger and smaller) are unacceptable. The quadratic model
is the simplest model that can handle this sort of quali-
tative distinction. Introducing more sophisticated higher
order models often does not pay as the feedback is only
qualitative and rather coarse at that. Hence, quadratic mod-
els seem to strike an acceptable balance between flexibility
and parsimony.

The parameters «, 3 and 7 are determined by using
maximum likelihood estimation, i.e. they optimize the prob-
ability of the actual configuration occurring. Loosely speak-
ing, if we look up the z-value for each of the images in the
collection box and then use eq.(6) to compute the prob-
ability p that they are in fact an example (p > 1/2) or
counter-example (p < 1/2), then the parameters (a, 3,7)
are chosen to optimize the log-likelihood:

log = f(x) &)

az? + P +1; (6)

log Ly =) (yilogpi + (1 —yi)log(1 —pi)) (7))
i=1

More details can be found in [2].

3.3. Combining univariate models

Up to now we have computed the probability for each in-
dividual feature. To extend this to a probability measure
on the whole space we have to make further assumptions.
The simplest is to assume independence of the different
features so that the overall probability can be obtained by
multiplying all the individual contributions (or summing
the logarithms):

K
log p(I) = logp(x) = > _ log p(a) ®)
k=1

Although it is clear that the assumption of independence
will not always be valid, it will be a worthwhile assump-
tion in most cases. Furthermore, the structure of eq.(8)

DPP2001: International Conference on Digital Production Printing and Industrial Applications

immediately suggest an extension in which the contribu-
tion of the different features are weighted relative to their
importance:

K
logp(I) = logp(x) = > wylogp(er) (9)
k=1

The weightfactors wy, can be determined automatically by
considering the goodness-of-fit of each 1-dimensional re-
gression model (see section 3.4).

3.4. Using regression diagnostics for feature selections

Selecting which of the pre-computed features are most in-
formative with regard to the user’s preferences, is crucial
to achieving efficiency in retrieval. In this section we will
argue that one of the additional boons of the proposed ap-
proach is that regression comes with a set of diagnostic
tools that allow the system to automatically quantify the
goodness-of-fit of the proposed model and select the fea-
tures accordingly.

As explained above, the inference engine uses the se-
lected examples and counter-examples to construct for each
feature = a regression model that predicts the relevance of
that feature in the overall judgement of the user. Standard
regression diagnostic tools can then be invoked to judge
the fit and predictive power of each such model. This
helps us to gauge the success of the feature in predicting
relevance and can therefore be used to narrow down the
feature-set. More precisely, if for a particular feature z;,
the prediction of the fitted model (6) fails to square up with
the relevance feedback from the user, this indicates that
that particular feature x; does not feature prominently in
the perceptual appreciation of the user. Hence, a uniform
sampling regime for that feature is advisable, as there is no
reason to narrow its sampling-range.

Conversely, if for a different feature x ;, logistic regres-
sion yields a well-fitting model we can conclude that the
feature plays an important role in the user’s appreciation of
the image, and we are well advised to bias the sampling-
procedure as to favour feature-values x; that have high p-
value. That way, the fraction of relevant features in each
new sample (as displayed on the sample display) will grad-
ually increase.

The simplest way to measure the model’s performance
is by looking at the value of the maximum log-likelihood
(7) that is achieved for each feature. Let A denote this
value for the k-th feature xj,. Itis easy to check that \;, <0
and proportional to the model-fit, so that A\, = 0 corre-
sponds to a perfectly linearly separable model (i.e. exam-
ples and counter-examples are separated by a threshold)
while more negative values are indicative of a progres-
sively poorer fit. Hence the weights wy, in eq.(9) can be
taken to be wy, = exp(—|Ag|)-

326

4. Discussion and conclusion

In this paper we have presented the outline of a CBIR-
interface that supports natural forms of interaction and rel-
evance feedback. The hallmark of our approach is that the
user interacts directly with images rather than with arcane
mathematical features. Furthermore, the interaction pro-
ceeds in an intuitively transparent fashion: the user sim-
ply clicks on images to single out examples and counter-
examples. The real work is done by an inference engine
that harnesses this information to iteratively refine its esti-
mate of the underlying parametric probability model which
predicts each image’s relevance.

We have built a prototype of this interface for exper-
imental purposes and attached it to a database of about
1500 images taken from collections of design and geology
images. These images were chosen because of the com-
plexity of their visual content that effectively defies key-
word characterisation. Due to lack of space, it’s not pos-
sible to include an extensive discussion; suffice it to say
that preliminary experiments confirm our expectations: (i)
Because of its intuitively transparent lay-out the threshold
for use is very low, and even non-experts have little dif-
ficulty operating the system; (ii) The proposed feedback-
procedures are both more flexible and powerful than the
ones encountered in the more standard interfaces.

References

[1] LJ. Cox, M.L. Miller, T.P. Minka, T. Papathomas and P. N
Yianilos: The Bayesian Image Retrieval System, PicHunter:
Theory, Implementation and Psychophysical Experiments.
IEEE Trans. Image Processing, Vol.9, No.1, January 2000.

[2] D.W. Hosmer and S. Lemeshow: Applied Logistic Regres-
sion. Wiley Series in Probability and Mathematical Statis-
tics, 1989.

[3] Greet Frederix, Geert Caenen and Eric J. Pauwels: PARISS:
Panoramic, Adaptive and Reconfigurable Interface for Sim-
ilarity Search. Proc. of ICIP 2000, International Confer-
ence on Image Processing. Vol.IIL, pp. 222-225. Vancouver,
September 2000.

[4] S. Santini and R. Jain: Beyond Query by Example. Proceed-
ings of ACM Multimedia’98, Bristol, UK.

